

Exame Final Nacional de Matemática B Prova 735 | 1.ª Fase | Ensino Secundário | 2023

11.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho $\,|\,$ Decreto-Lei n.º 22/2023, de 3 de abril

Braille

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. 9 Páginas

A prova inclui 9 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 5 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

Para cada resposta, identifique o item.

Risque aquilo que pretende que não seja classificado.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r \ (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; \ r - \text{raio})$

ou

 $\frac{\alpha\pi r}{180} \ (\alpha - \text{amplitude}, \text{em graus}, \text{do ângulo ao centro}; \ r - \text{raio})$

Áreas de figuras planas

Losango: $\frac{Diagonal\ maior \times Diagonal\ menor}{2}$

Trapézio: $\frac{Base\ maior + Base\ menor}{2} \times Altura$

Polígono regular: Semiperimetro × Apótema

Sector circular:

 $\frac{\alpha r^2}{2}$ (α – amplitude, em radianos, do ângulo ao centro; r – raio)

ου

 $\frac{\alpha\pi r^2}{360}$ (α – amplitude, em graus, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone: πrg (r - raio da base; g - geratriz)

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Área lateral de um cilindro reto: $2 \pi rg$ (r – raio da base; g – geratriz)

Volumes

Pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Esfera: $\frac{4}{3}\pi r^3$ (r-raio)

Cilindro: Área da base × Altura

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

- Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$
- Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Probabilidades e Estatística

Se X é uma variável aleatória discreta de valores x_i com probabilidade p_i , então:

• Valor médio de X:

$$\mu = p_1 x_1 + \ldots + p_n x_n$$

• Desvio padrão de X:

$$\sigma = \sqrt{p_1(x_1 - \mu)^2 + \dots + p_n(x_n - \mu)^2}$$

Se X é uma variável aleatória normal de valor médio μ e desvio padrão σ , então:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,6827$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Item obrigatório

1. Uma empresa do sector da alimentação decidiu produzir dois suplementos alimentares, I e II, ambos feitos à base de maçã, amendoim e chocolate.

Cada embalagem do suplemento I tem o custo de $2,00 \in$ e contém 0,4 kg de maçã, 0,5 kg de amendoim e 0,6 kg de chocolate.

Cada embalagem do suplemento II tem o custo de $1,50 \in$ e contém 0,6 kg de maçã, 0,5 kg de amendoim e 0,4 kg de chocolate.

Para otimizar a produção, a empresa tem de gastar, diariamente, pelo menos, $140~\mathrm{kg}$ de maçã, pelo menos, $150~\mathrm{kg}$ de amendoim e, pelo menos, $140~\mathrm{kg}$ de chocolate.

A empresa não consegue produzir mais do que 350 embalagens por dia, e pretende determinar quantas embalagens do suplemento I e quantas embalagens do suplemento II deve produzir, diariamente, para que o custo total diário da produção dos dois suplementos seja mínimo.

Seja x o número de embalagens do suplemento I e seja y o número de embalagens do suplemento II a produzir, diariamente, pela empresa.

Pretende-se determinar os valores de x e de y que obedeçam às condições referidas.

Apresente uma expressão da função objetivo e um sistema de restrições que permitam determinar o valor de x e o valor de y correspondentes à solução do problema.

Item obrigatório

2. Relativamente ao número de maçãs (x) por macieira e ao peso médio (y), em gramas, das maçãs produzidas pelas macieiras de um pomar, na colheita do ano de 2022, considere adequado o modelo de regressão linear de y sobre x, definido por

$$v = -0.197x + 227.119$$

Uma macieira desse pomar produziu 160 maçãs na colheita do ano de 2022.

Estime, com base no modelo proposto, o peso médio dessas maçãs.

3. Na aldeia do Sr. Silva, para se conservar as maçãs colhidas nos pomares, é costume guardá-las num local escuro, dispostas sobre uma superfície seca e plana.

As maçãs são dispostas em filas, mas sem ficarem em contacto umas com as outras, pois, caso ficassem em contacto, se uma das maçãs apodrecesse, as maçãs sadias em contacto com a maçã apodrecida também começariam a apodrecer.

O neto do Sr. Silva, que não conhecia bem o método usado pelo avô, dispôs as maçãs em filas, mas deixou-as em contacto umas com as outras.

Uma dessas maçãs apodreceu no primeiro dia. No segundo dia, apodreceram mais três maçãs. No terceiro dia, apodreceram mais cinco maçãs. E assim sucessivamente, durante 12 dias consecutivos, apodrecendo, em cada dia, mais duas maçãs do que no dia anterior.

Item obrigatório

3.1. Justifique que os números de maçãs que apodrecem, por dia, desde o primeiro até ao décimo segundo, são termos consecutivos de uma progressão aritmética.

Na sua resposta, indique a razão dessa progressão.

3.2. Do primeiro ao décimo segundo dia, apodreceram 80% das maçãs colhidas.

Quantas maçãs foram colhidas?

Justifique a sua resposta.

4. Numa unidade industrial de armazenamento de fruta, as maçãs são sujeitas a um banho de arrefecimento antes de serem armazenadas.

Admita que a temperatura, $\,T\,$, em graus Celsius, das maçãs, $\,x\,$ minutos após o início do banho de arrefecimento, é dada por

$$T(x) = -3 + (T_0 + 3)e^{-0.0432365x}$$
 , com $x \ge 0$,

em que $\,T_0\,$ é a temperatura, em graus Celsius, das maçãs no início do banho.

Para serem armazenadas, as maçãs devem estar a uma temperatura inferior a 7 °C .

Item obrigatório

- 4.1. Num certo dia, as maçãs estavam à temperatura de 25 °C quando se iniciou o banho de arrefecimento.
 - As maçãs estariam nas condições de armazenamento descritas 27 minutos após o início desse banho? Justifique a sua resposta.
- 4.2. Num outro dia, as maçãs estavam à temperatura de 33 °C quando se iniciou o banho de arrefecimento.

Item obrigatório

- 4.2.1. Determine a duração mínima do banho de arrefecimento, para que as maçãs pudessem ser armazenadas.
 - Apresente o resultado em minutos, arredondado às unidades.
 - Em cálculos intermédios, sempre que proceder a arredondamentos, conserve, no mínimo, três casas decimais.
- 4.2.2. Seja V a função que dá a taxa de variação instantânea da função T, para cada valor de x. Interprete, no contexto descrito, o significado de $V(16) \approx -0.78$.

Item obrigatório

5. O bravo-de-esmolfe é uma variedade portuguesa de maçã, com origem na aldeia de Esmolfe, situada no concelho de Penalva do Castelo.

Numa colheita, foram apanhadas 50 000 maçãs bravo-de-esmolfe.

Dessa colheita, serão comercializadas apenas as maçãs com calibre superior a $55~\mathrm{mm}$.

Admita que o calibre, em milímetros, das maçãs colhidas segue, aproximadamente, uma distribuição normal de valor médio $60~\mathrm{mm}$ e desvio padrão $5~\mathrm{mm}$.

Determine quantas maçãs dessa colheita se espera comercializar.

Apresente o resultado em milhares, arredondado às unidades de milhar.

Em cálculos intermédios, sempre que proceder a arredondamentos, conserve quatro casas decimais.

6. Admita que o número de horas de sol, S, em Penalva do Castelo, no dia de ordem x do ano de 2022 é dado por

$$S(x) = 12,1237 + 2,8720 \text{ sen } (0,0168x - 1,3255)$$
, para $x \in \{1, 2, ..., 365\}$

O argumento da função seno está em radianos.

No dia 1 de janeiro de 2022, em Penalva do Castelo, o sol nasceu às 7h 56min . Nesse dia, o Sr. Silva esteve no pomar desde as 15 horas até ao pôr do sol.

Quanto tempo esteve o Sr. Silva no pomar?

Apresente o resultado em horas e minutos, com os minutos arredondados às unidades.

Em cálculos intermédios, conserve, no mínimo, quatro casas decimais.

7. O preço por quilograma de maçãs pode variar em função do seu peso médio.

Admita que o valor a pagar, P, em euros, por quilograma de uma variedade de maçãs, em função do peso médio das maçãs, x, em gramas, é dado, aproximadamente, por

$$P(x) = 1,059 \ln(x) - 3,2553$$
, com $40 \le x \le 270$

A avó Maria comprou cinco maçãs, com os pesos que se seguem, em gramas:

Determine, de acordo com o modelo apresentado, o preço por quilograma das maçãs que a avó Maria comprou.

Apresente o valor pedido em euros, arredondado às centésimas.

Em cálculos intermédios, sempre que proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Item obrigatório

8. No pomar do Sr. Silva, existe um depósito cilíndrico com $2,5~\mathrm{m}$ de altura, assente por uma das bases.

O depósito encontrava-se vazio, e o seu enchimento, que demorou 6 horas, foi feito a partir de uma torneira com caudal constante.

Seja h a função que dá a altura, em metros, de água no depósito, t horas após o início do seu enchimento, até ao instante em que o depósito ficou cheio.

Sejam A e B os gráficos de duas funções, representados em referencial cartesiano, tais que:

- o gráfico A corresponde a um segmento de reta, com extremos nos pontos de coordenadas (0; 2,5) e (6;0);
- o gráfico B corresponde a um arco de parábola, com concavidade voltada para cima e vértice na origem, com extremos nos pontos de coordenadas (0; 0) e (6; 2,5).

Considere a afirmação:

«Nem o gráfico A nem o gráfico B podem representar a função h .»

Justifique que a afirmação anterior é verdadeira, apresentando uma razão para cada um dos gráficos.

9. A avó Maria usa uma forma com formato de tronco de um cone circular reto para fazer o seu bolo de maçã.

Essa forma pode ser representada por um tronco de cone obtido a partir de um corte paralelo à base de um cone inicial.

Sabe-se que:

- o cone inicial tem 55 cm de altura e base com 22 cm de diâmetro;
- o tronco de cone tem 10 cm de altura e a sua base maior coincide com a base do cone inicial.

Item obrigatório

9.1. Determine a capacidade da forma.

Apresente o resultado em litros, arredondado às unidades.

Em cálculos intermédios, se proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

9.2. Considere que, no cone inicial, com 55 cm de altura e base com 22 cm de diâmetro, se fixa um referencial ortogonal e monométrico, Oxyz, cuja origem coincide com o centro da base do cone, e cujo vértice do cone, V, pertence ao semieixo positivo Oz.

No referencial, a unidade é o centímetro.

Quais são as coordenadas do ponto simétrico do ponto $\,V\,$ relativamente à origem do referencial? Na sua resposta, comece por indicar as coordenadas do ponto $\,V\,$.

Item obrigatório

10. Considere uma circunferência com centro O e $8~\mathrm{cm}$ de diâmetro. Considere também um arco menor, AB, dessa circunferência, com $6~\mathrm{cm}$ de comprimento.

Determine o comprimento da corda [AB].

Apresente o resultado em centímetros, arredondado às unidades.

Em cálculos intermédios, sempre que proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 9 itens contribuem obrigatoriamente para a classificação final da prova.

1	20 pontos
2	16 pontos
3.1	16 pontos
4.1	16 pontos
4.2.1	16 pontos
5	16 pontos
8	20 pontos
9.1	16 pontos
10	16 pontos
Subtotal	152 pontos
•	ns cujas respostas obtenham melhor
Destes 5 itens, contribuem para a classificação final da prova os 3 ite pontuação. 3.2.	ns cujas respostas obtenham melhor 16 pontos
pontuação.	
pontuação.	16 pontos
pontuação. 3.2. 4.2.2.	16 pontos
pontuação. 3.2. 4.2.2. 6.	16 pontos 16 pontos 16 pontos
pontuação. 3.2	16 pontos 16 pontos 16 pontos 16 pontos